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Set Notation in Isabelle

• Set notation is crucial to mathematical discourse.

• Set-theoretic abstractions naturally express many 
complex constructions.

• A set in higher-order logic is a boolean-valued map.

• Its elements must all have the same type
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Set Theory Primitives

• The type α set, which abbreviates α⇒bool

• The membership relation: ∈

• The subset relation: ⊆

• Reflexive, anti-symmetric, transitive

• The empty set: {}

• The universal set: UNIV



Basic Set Theory Operations



Basic Set Theory Operations



Basic Set Theory Operations



Basic Set Theory Operations



Basic Set Theory Operations



Basic Set Theory Operations



Basic Set Theory Operations



Big Union and Intersection



Big Union and Intersection



Big Union and Intersection



Big Union and Intersection



Big Union and Intersection

And the analogous forms of intersections...
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Functions

• Also inj, surj, bij, inv, etc. (injective,...) 

• Don’t re-invent image and inverse image!!
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Intervals, Sums and Products
  {..<u} == {x. x < u}
   {..u} == {x. x ≤ u}
  {l<..} == {x. l<x}
   {l..} == {x. l≤x}
{l<..<u} == {l<..} ∩ {..<u}
 {l..<u} == {l..} ∩ {..<u}

setsum f A and setprod f A
∑i∈I. f and ∏i∈I. f
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A Harder Proof Involving Sets

induction on the finite set, A

a way to specify the types of variables
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base case: A is empty



Outcome of the Induction

base case: A is empty

inductive step: A = insert x F
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need to apply a distributive law
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Finished!

No need for the first “auto”...
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Proving Theorems about Sets

• It is not practical to learn all the built-in lemmas.

• Instead, try an automatic proof method:

• auto

• force

• blast

• Each uses the built-in library, comprising hundreds 
of facts, with powerful heuristics.



Finding Theorems about Sets



Finding Theorems about Sets
Step 1: click this button!



Finding Theorems about Sets

Step 2: type some patterns



What Theorems Were Found?


