Interactive Formal Verification 6: Sets

Tjark Weber (Slides: Lawrence C Paulson) Computer Laboratory University of Cambridge

• Set notation is crucial to mathematical discourse.

- Set notation is crucial to mathematical discourse.
- Set-theoretic abstractions naturally express many complex constructions.

- Set notation is crucial to mathematical discourse.
- Set-theoretic abstractions naturally express many complex constructions.
- A set in higher-order logic is a boolean-valued map.

- Set notation is crucial to mathematical discourse.
- Set-theoretic abstractions naturally express many complex constructions.
- A set in higher-order logic is a boolean-valued map.
- Its elements must all have the same type

• The type α set, which abbreviates $\alpha \Rightarrow bool$

- The type α set, which abbreviates $\alpha \Rightarrow bool$
- The membership relation: \in

- The type α set, which abbreviates $\alpha \Rightarrow bool$
- The membership relation: \in
- The subset relation: \subseteq
 - Reflexive, anti-symmetric, transitive

- The type α set, which abbreviates $\alpha \Rightarrow bool$
- The membership relation: \in
- The subset relation: \subseteq
 - Reflexive, anti-symmetric, transitive
- The empty set: { }

- The type α set, which abbreviates $\alpha \Rightarrow bool$
- The membership relation: \in
- The subset relation: \subseteq
 - Reflexive, anti-symmetric, transitive
- The empty set: { }
- The universal set: UNIV

 $e \in \{x. P(x)\} \iff P(e)$

 $e \in \{x. P(x)\} \iff P(e)$ $e \in \{x \in A. P(x)\} \iff e \in A \land P(e)$

 $e \in \{x, P(x)\} \iff P(e)$ $e \in \{x \in A, P(x)\} \iff e \in A \land P(e)$ $e \in -A \iff e \notin A$

 $e \in \{x. P(x)\} \iff P(e)$ $e \in \{x \in A. P(x)\} \iff e \in A \land P(e)$ $e \in -A \iff e \notin A$ $e \in A \cup B \iff e \in A \lor e \in B$

 $e \in \{x, P(x)\} \iff P(e)$ $e \in \{x \in A, P(x)\} \iff e \in A \land P(e)$ $e \in -A \iff e \notin A$ $e \in A \cup B \iff e \in A \lor e \in B$ $e \in A \cap B \iff e \in A \land e \in B$

 $e \in \{x, P(x)\} \iff P(e)$ $e \in \{x \in A, P(x)\} \iff e \in A \land P(e)$ $e \in -A \iff e \notin A$ $e \in A \cup B \iff e \in A \lor e \in B$ $e \in A \cap B \iff e \in A \land e \in B$ $e \in Pow(A) \iff e \subseteq A$

 $e \in \left(\bigcup x. B(x)\right) \iff \exists x. e \in B(x)$

 $e \in \left(\bigcup x. B(x)\right) \iff \exists x. e \in B(x)$ $e \in \left(\bigcup x \in A. B(x)\right) \iff \exists x \in A. e \in B(x)$

$$e \in \left(\bigcup x. B(x)\right) \iff \exists x. e \in B(x)$$
$$e \in \left(\bigcup x \in A. B(x)\right) \iff \exists x \in A. e \in B(x)$$
$$e \in \bigcup A \iff \exists x \in A. e \in x$$

$$e \in \left(\bigcup x. B(x)\right) \iff \exists x. e \in B(x)$$
$$e \in \left(\bigcup x \in A. B(x)\right) \iff \exists x \in A. e \in B(x)$$
$$e \in \bigcup A \iff \exists x \in A. e \in x$$

And the analogous forms of intersections...

A Simple Set Theory Proof

000	Examples.thy	\bigcirc
00 CO 🛛 🔺 🕨 🗹 🕬	🚔 🔎 🕕 🐖 😄 🤣 🚏 🦳	
lemma "(INT x: A Un B. C ((INT x: A. C x) In	x Un D) = t (INT x: B. C x)) Un D"	0
<pre>opply auto done</pre>		
-u-: Examples.thy 2	% L7 (Isar Utoks Abbrev;	Scripting)
proof (prove): step 0		\cap
goal (1 subgoal): 1. (∩x∈A ∪ B. C x ∪ D) :	= (∩x∈A. C x) ∩ (∩x∈B. C x)	υD
-u-:%%- *goals* To	p L1 (Isar Proofstate Uto	oks Abbrev;)
tool-bar undo		1.

A Simple Set Theory Proof

A Simple Set Theory Proof

000		Examples.thy				\odot
00 00 I 🔺 🕨 Y 🕨	4 🖀 🔎 🚯	197 😄 🤣 🏌	2			
lemma "(INT x: A Un B. ((INT x: A. C x)	C x Un D) = Int (INT x:	B. C x)) Un I	D"			Ó
apply auto ▶done						
						× v
-u-: Examples.thy	2% L9	(Isar Utoks A	bbrev; Scr	ripting)	
proof (prove): step 1						\cap
goal: No subgoals!						
						•
-u-:%%- *goals*	Top L1	(Isar Proofst	ate Utoks	Abbrev;)	<u> </u>
tool-bar next						11.

 $e \in (f'A) \iff \exists x \in A. \ e = f(x)$

 $e \in (f'A) \iff \exists x \in A. \ e = f(x)$ $e \in (f - A) \iff f(e) \in A$

$$e \in (f`A) \iff \exists x \in A. \ e = f(x)$$
$$e \in (f-`A) \iff f(e) \in A$$
$$f(x:=y) = (\lambda z. \text{ if } z = x \text{ then } y \text{ else } f(z))$$

$$e \in (f^{*}A) \iff \exists x \in A. \ e = f(x)$$
$$e \in (f^{-}A) \iff f(e) \in A$$
$$f(x := y) = (\lambda z. \ \text{if } z = x \text{ then } y \text{ else } f(z))$$

• Also inj, surj, bij, inv, etc. (injective,...)

$$e \in (f^{*}A) \iff \exists x \in A. \ e = f(x)$$
$$e \in (f^{-}A) \iff f(e) \in A$$
$$f(x:=y) = (\lambda z. \ \text{if} \ z = x \text{ then } y \text{ else } f(z))$$

- Also inj, surj, bij, inv, etc. (injective,...)
- Don't *re-invent* image and inverse image!!

Finite Set Notation

Finite Set Notation

 $\{a_1,\ldots,a_n\} = \texttt{insert}(a_1,\ldots,\texttt{insert}(a_n,\{\}))$

Finite Set Notation

 $\{a_1,\ldots,a_n\} = \texttt{insert}(a_1,\ldots,\texttt{insert}(a_n,\{\}))$

 $e \in \texttt{insert}(a,B) \iff e = a \lor e \in B$

Finite Sets

A finite set is defined *inductively* in terms of { } and insert

Finite Sets

A finite set is defined *inductively* in terms of { } and insert

 $\texttt{finite}(A \cup B) = (\texttt{finite} A \land \texttt{finite} B)$

Finite Sets

A finite set is defined *inductively* in terms of {} and insert

 $\texttt{finite}(A \cup B) = (\texttt{finite} A \land \texttt{finite} B)$

 $\texttt{finite}\, A \Longrightarrow \texttt{card}(\texttt{Pow}\, A) = 2^{\texttt{card}\, A}$

{..<u} == {x. x < u}
{..u} == {x. x < u}
{l<..} == {x. x ≤ u}
{l<..} == {x. 1<x}
{1..} == {x. 1≤x}
{1<..<u} == {1<..} ∩ {..<u}
{1..<u} == {1..} ∩ {..<u}</pre>

{..<u} == {x. x < u}
{..u} == {x. x < u}
{1<..} == {x. 1<x}
{1..} == {x. 1<x}
{1..} == {1<..} ∩ {..<u}
{1..<u} == {1..} ∩ {..<u}</pre>

setsum f A and setprod f A

{..<u} == {x. x < u}
{..u} == {x. x < u}
{l<..} == {x. 1<x}
{l..} == {x. 1<x}
{l..} == {x. 1≤x}
{l<..<u} == {1<..} ∩ {..<u}
{1..<u} == {1..} ∩ {..<u}</pre>

setsum f A and setprod f A $\sum_{i \in I. f \text{ and } \prod_{i \in I. f}} f$

A Harder Proof Involving Sets

$\odot \odot \odot$		Examples.thy	\bigcirc
∞ ∞ ∡ ◄ ► ⊻	H 🖀 🔎 (🕦 🐖 🤤 🤣 🚏	
<pre>lemma fixes c :: "real" shows "finite A ⇒ apply (induct A rule apply auto apply (auto simp add done</pre>	setsum (%x. finite_indu algebra_sim	. c * f x) A = c * setsum f A" uct) mps)	0
-u-:**- Examples.thy	5% L15	(Isar Utoks Abbrev; Scripting)	4
nnoof (nnovo), stor	<u>,</u>		n
proof (prove): step (0		
goal (1 subgoal): 1. finite A ⇒ (∑x	∈A.c*fx)) = c * setsum f A	
) 4 +
-u-:%%- *goals*	Top L1	(Isar Proofstate Utoks Abbrev;)	
tool-bar undo			1

A Harder Proof Involving Sets

A Harder Proof Involving Sets

Outcome of the Induction

```
\bigcirc \bigcirc \bigcirc
                                       Examples.thy
 00 00 I 🔺 🕨 Y 🛏 🆀 🔎 🗊 🐷 🤤 🤣 🚏
 lemma
  fixes c :: "real"
  shows "finite A \implies setsum (%x. c * f x) A = c * setsum f A"
 apply (induct A rule: finite_induct)
apply auto
 apply (auto simp add: algebra_simps)
 done
-u-:**- Examples.thy 5% L17
                                      (Isar Utoks Abbrev; Scripting )------
 proof (prove): step 1
 goal (2 subgoals):
 1. (\sum x \in \{\}, c * f x) = c * setsum f \{\}
  2. \Lambda x \in F. [finite F; x \notin F; (\Sigma x \in F. c * f x) = c * setsum f F]
            \Rightarrow (\sum x \in insert x F. c * f x) = c * setsum f (insert x F)
-u-:%%- *aoals*
                                      (Isar Proofstate Utoks Abbrev;)-----
                          Top L1
 tool-bar next
```

Outcome of the Induction

Outcome of the Induction

Almost There!

Almost There!

Almost There!

Finished!

000		Examples.thy	\supset
00 CO 🛛 🔺 🕨 🗴	M 🖀 🔎 🐧	🗊 🕼 🤤 🤣 🚏	
<pre>lemma fixes c :: "real" shows "finite A ⇒ apply (induct A rule: apply auto apply (auto simp add: </pre>	<mark>setsum (%x.</mark> finite_induc algebra_simp	c * f x) A = c * setsum f A" uct) mps)	Ô
aone -u_:**_ Examples thy	5% 110	(Tear Utoks Abbrew: Scripting)	A Y
-u Examples. city	3% L19	(Isur bloks Abbrev, Scripting J	h
proof (prove): step 3			
goal:			
No subgoals!			
			9
			Ŧ
-u-:%%- *goals*	Top L1	(Isar Proofstate Utoks Abbrev;)	
tool-bar next			11.

Finished!

\odot \odot	Examples.thy	\odot
∞ ∞ エ ◄ ► 포 >	M 🖀 🔎 🕕 🕼 😄 🤣 🚏	
<pre>lemma fixes c :: "real" shows "finite A ⇒ s apply (induct A rule: apply auto apply (auto simp add: dono</pre>	<pre>setsum (%x. c * f x) A = c * setsum f A" finite_induct) algebra_simps)</pre>	Ô
aone	No need for the first "auto"	
-u-:**- Examples.thy	5% L19 (Isar Utoks Abbrev; Scripting)	
proof (prove): step 3		
goal: No subgoals!		
-u-:%%- *goals*	Top L1 (Isar Proofstate Utoks Abbrev;)	
		11.

• It is not practical to learn all the built-in lemmas.

- It is not practical to learn all the built-in lemmas.
- Instead, try an automatic proof method:
 - auto
 - force
 - blast

- It is not practical to learn all the built-in lemmas.
- Instead, try an automatic proof method:
 - auto
 - force
 - blast
- Each uses the built-in library, comprising hundreds of facts, with powerful heuristics.

Finding Theorems about Sets

0 0	Examples.thy	\bigcirc
∞ ∞ エ ◄ ► 포 ►	🛃 🖀 📣 🗊 🐖 🖨 🤣 🚏	_
<pre>lemma fixes c :: "real" shows "finite A ⇒ s apply (induct A rule: apply auto apply (auto simp add: done</pre>	<pre>Find theorems setsum (%x. c * f x) A = c * setsum f A" finite_induct) algebra_simps)</pre>	
-u-: Examples.thy lemma finite $A \implies (\Sigma$	5% L13 (Isar Utoks Abbrev; Scripting) x∈?A. ?c * ?f x) = ?c * setsum ?f ?A	↓ ↓ ▼
-u-:%%- *response*	All L1 (Isar Messages Utoks Abbrev;)	•

Finding Theorems about Sets

Finding Theorems about Sets

What Theorems Were Found?

```
000
                                      *response*
😡 co 🗶 🔺 🕨 🗶 🖂 🖀 🖉 🗲 🗲 💱
searched for:
   "_ U
   " ∩ "
   "card"
found 2 theorems in 0.120 secs:
Finite_Set.card_Un_Int:
  [finite ?A; finite ?B]
  \Rightarrow card ?A + card ?B = card (?A \cup ?B) + card (?A \cap ?B)
Finite_Set.card_Un_disjoint:
  [finite ?A; finite ?B; ?A \cap ?B = {}] \implies card (?A \cup ?B) = card ?A + card ?B
-u-:%%- *response*
                       A11 L2
                                   (Isar Messages Utoks Abbrev;)------
```